Elephant Attack in Botswana


I had decided that I wanted to be a Zoologist by the time I was five years old. My love for animals had started with my dad telling me about different bird songs as we walked through the park on the way back from school and had progressed into Christmases filled with new wildlife books and animal-themed stationary. I then became obsessed with dinosaurs after my mum had taken me to the London Natural History Museum for the first time. All I wanted was to finish school so that I could learn about the things that I wanted to study for the rest of my life. And there was one continent that I wanted to travel to. Africa. My dad had spent his younger years living in different countries in Africa carrying out advertising and business work. He often used to tell me stories about the animals he would come across driving back from the office and how the sky was beautiful in the evening, filled with crystal-clear stars. He would tell me of the people, the culture, and the laughs he had had with the local people. David Attenborough’s BBC show on Africa only mesmerised me more. I needed to go.

“The savannah was all around me, the gold sunlight I had thought about for so long was enveloping the vehicle that drove us to the camp”

I took a gap year and worked in a hotel in my hometown. I was working 70-hour weeks and I wanted to quit almost every day. The only thing that was keeping me going was the thought that in a few months, I would book a trip of a lifetime with the money I had saved. Finally, it was arranged. I was heading off for nine weeks with a charity to carry out a conservation internship, specifically looking at herbivore numbers and human-wildlife conflict. The day I arrived was surreal. The savannah was all around me, the gold sunlight I had thought about for so long was enveloping the vehicle that drove us to the camp. I was about to embark on an experience of a lifetime; meeting new people from around the world, becoming immersed in African culture, and seeing some of the animals I had only seen on TV and in my dreams. Although I could spend many hours writing about my trip, I am going to tell you about one incident that changed me in ways I could have never imagined.

“The animals we were seeing were incredible”

Our days consisted of being woken up at 6am either by our supervisor Hollie, or by the whooping hyenas outside our tents. Winter had hit Botswana, and the mornings were freezing. We stumbled around in our tents trying to change into warm clothes before heading to the main cabin for breakfast. Everyone else in our group seemed to struggle to eat anything at this time in the morning, but I was always hungry and would butter two large pieces of toast while making the strongest coffee that my stomach could handle. We would clamber into our white Land Rover and make our way into the bush. Mornings were dedicated to bird surveys; one person would sit with binoculars calling out every species of bird they saw, whilst the rest of us wrote the time and birds seen on our small notepads. The rest of the day was spent going to different areas and taking herbivore surveys. We would also sometimes test our skills at scat and track identification. The sun would start heating the ground at about 12, and the rest of the day was hot and intense. The animals we were seeing were incredible. Only a 5-minute drive from our camp, we would see elephants, warthogs, zebras, buffalo, giraffes, to name only a few, and hear the roars of lions in the distance.

“His tusks were magnificent, and it was only in this moment that the true tragedy of poaching and diminishing elephant numbers hit me.”

Botswana has the largest density of elephants compared to anywhere else in the world. The first time we saw an elephant I was in awe. We had come across an enormous lone bull on the side of a dirt road and we stayed for about 30 minutes just staring and taking him in. His size was intimidating, yet fascinating. His ears slowly flapped against his head while his trunk coiled around branches of a tree before he pulled it out with ease, spending the next minute munching away. He often raised his head to get a good look at us, but there was only curiosity in his small eyes. His tusks were magnificent, and it was only in this moment that the true tragedy of poaching and diminishing elephant numbers hit me. They are beautiful and captivating creatures. In the days after this sighting, we were lucky enough to see herd after herd of elephants.

But there was something in the air. Elephants had started to mock-charge our vehicle. They would trumpet with wild and terrified looks in their eyes, running at us and then stopping before impact. Sometimes this would go on for an agonising ten minutes. Although these events were terrifying, we had been reassured that actual elephant attacks were incredibly rare, and often the sound of their tusks against hard metal scared them away. Hollie had lived in Africa her whole life and had never seen anything like it. Nevertheless, we carried on with our daily routine.

“We came around a corner on the sand track. Suddenly there was an elephant.”

One evening we were driving back to our camp later than usual. Hollie had decided to take a different route home as we had heard about a family of lions in the area. We drove around for a while but unfortunately didn’t see a single paw or whisker. Our Landy picked up speed as we made our way back to camp. It was my time to cook that evening, and I was planning ingredients and spices in my head as we drove. We came around a corner on the sand track. Suddenly there was an elephant. I think we were more surprised than she was. She trumpeted and then jogged off. Hollie quickly reversed as we realised that there was, in fact, a whole herd of elephants ranging from babies to grandparents in front of us. The elephants seemed agitated. Suddenly a young male came running through the herd towards us. His eyes were wild, and he held is trunk high, trumpeting like mad. The other elephants started responding to him, their deafening calls getting louder and louder. He mock-charged the vehicle, charging at us then stopping a few metres ahead. We had started to become accustomed to this behaviour, and we expected him to eventually leave with his herd. But one charge later, he hit us. He charged will full force and smashed into the vehicle. We all screamed as his tusks came through the windscreen and missed Hollie’s head by only a centimetre. I had never felt such terror before. He stepped back and then rammed into the vehicle once more, pushing us back at full speed. Hollie desperately tried reversing the vehicle off his long tusks, but it was no use. He pushed us about 100 metres and then we slammed into a tree, our necks were flung forwards and the seats of the vehicle punched into our backs. My breathing was erratic and that’s when it struck me. We might die. I am all the way in Africa, miles away from home and I might die. The elephant was going mad. He came around the side of the vehicle and began rolling us. Amidst my terror-stricken thoughts, I heard Hollie’s voice. “Out! Get out! Everyone out!” We used the incline to drop us out of the vehicle and then we ran. I set my eyes on a nearby tree and aimed my shaky run towards it. Three of us ended up behind the same tree, and Hollie had to hold her hand over my mouth to try and quieten my breathing. The elephant was crushing and breaking our vehicle in front of us. The glass had shattered everywhere, the front doors had been torn off, and the metal was crumpled. It felt like an eternity, but he finally walked away after hearing numerous calls from his herd in the distance. And just like that he was gone.

“We had to walk slowly and quietly so that we wouldn’t disturb any other animals.”

We slowly started to come out from behind our trees in stunned silence. Some of us began to cry, and others were sick from the shock. We had nothing to protect us anymore. The Land Rover was in ruins, and there was nobody for miles around. Hollie grabbed the emergency box from inside the vehicle which had, fortunately, survived the force of the elephant’s feet crushing the metal doors. Inside was the satellite phone that was designed to work anywhere, even without signal. But it didn’t work. This spot seemed to be the only place in all of Botswana that was completely dead. We took it in turns to carry on trying, while Hollie paced around the vehicle working out what we should do. We had two options; we could stay there and hope that the nearest camp was taking tourists out on a safari that afternoon, or we could walk back to the lodge, which is rule number one of the things to never do when in the African bush. We had no water left and it would soon start to get dark. Hollie made the decision to walk. We had to walk slowly and quietly so that we wouldn’t disturb any other animals. If we were to see another elephant, we had to climb up trees. We must have walked for only 15 minutes when we heard a vehicle. Suddenly around the corner, the other camps Land Rover came racing towards us. One of the men looked terrified and relieved when he realised that we were OK, “You’re alive! The condition of the car! What happened?”

The rest of the trip was of course affected by this event as anything like this was completely unheard of in the area. We concluded that this herd was migrating from an area of intense poaching and on seeing the vehicle, had associated it with danger, pain, and loss. I had no anger towards the elephants. In fact, I felt proud of them. Proud that they were revolting against our monstrous race and taking control. It is estimated that 100 African elephants are killed for their ivory and meat every day. The attack was a stark reminder of what this really means and how this affects the elephants. Just like us, they were terrified. The attack changed me in a way I had not expected. I felt closer to elephants than I had ever done before, and I had felt their power and rage which had been created by our own species. I now devote time to educating people about poaching and conservation. If everyone had the experience I have had, perhaps we would think differently before messing around with these beautiful animals.

This story has been published in the February issue of the BBC Wildlife Magazine, written by my team leader Hollie in her own words. Get your copy now online.

And remember. We don’t own animals. It is not our right to abuse or use them. We live together on this planet and we should be building a future based on respect and harmony. Conservation matters. Let’s spread the word.

Written by Octavia Brayley, Zoology (BSc)


Our newest lecturer, Dr. Jordi Paps Montserrat, talks to us about his latest research

Introduced to us by his long-time friend and now co-worker Dr. Davide Pisani, Dr. Jordi Paps showed us how he analyses ancestral genomes to reveal bursts of novelties associated with major evolutionary transitions.

Originally from Barcelona, Dr. Paps moved to England in 2010 to work with Peter Holland at the University of Oxford. He then continued his work at the University of Essex in 2015, to finally join our team at Bristol, to the delight of his friend Dr. Pisani.

“Animals are one of my favourite clades”

Specialising in animal phylogenetics, Dr. Paps said he had been inspired by the work of Ernst Haeckel. He declared from the start of the seminar: “animals are one of my favourite clades”. Indeed, he went on to remind us that animals are but a small branch of the “tree of life”. However, animals distinguish themselves by being multicellular. Several functions derive from multicellularity, for example cell differentiation or immunity (i.e. differentiating self from non-self).

For the last 5 years, Dr. Jordi Paps has been investigating the origins of those functions. Having access to ancient genomes enabled Dr. Paps to run comparative analyses on 64 genomes. Combining BLAST search and MCL analysis, Dr. Paps wrote his own Pearl script humorously entitled Phylogenetically Aware Parsing Script (PAPS).

His analysis revealed 6331 homology groups in the genome of the first animals. Using gene ontology, Dr. Paps then classified the functions of these homology groups to reveal that most of them are associated with gene regulation and metabolism. Moreover, 60% of the human genome descends from these homology groups. In the words of Dr. Paps, the first animal genomes were already “quite animaly”.

Number of new homology groups

However, what set the animal genomes apart was the number of new homology groups. Indeed, animals had twice the number of homology groups that other ancestral genomes did. By considering homology groups that are retained in all present animals, Dr. Paps identified 25 “essential new animal homology groups”. Of these 25 “essential groups”, 15 predated animals, differing in the processing of input and output. However, the rest were completely novel groups associated with cell adhesion, cell cycle, receptors and synaptic exocytosis. All of these functions are associated with multicellularity.

Thus, Dr. Paps presented evidence that genomic novelty is associated with the major evolutionary transition that led to the advent of the animal kingdom.

What about other multicellular groups?

But he did not stop at that. “What about other multicellular groups?”, he asked the audience. Dr. Paps then went on to describe how, in association with Alexander Bowles, he ran a similar analysis to investigate the origin of plants (streptophytes) and land plants (embryophytes). This time running the analysis on more than 200 genomes, Dr. Paps said that “the amount of novelty puts animals to shame”. Functional characterization of homology groups then revealed that most of the novelty was associated with multicellularity functions for streptophytes and terrestrialisation for embryophytes.

Associated with Cristina Guijarro, Dr. Paps used this analytical method once more to investigate the role of novelty inside the animal kingdom. They found that the novel homology groups were associated with cephalisation in ancestral Bilaterians. However, surprisingly, losses were also important at a finer scale. At phylum level, nematodes and tardigrades were “major losers”. Dr. Paps says that this is to be expected due to their simplified morphologies. Nevertheless, these phyla are amongst the most successful animals. Therefore, Dr. Paps demonstrated that loss of genomic groups is more important than previously thought when considering major evolutionary transitions.

On another humoristic note, Dr. Paps mentioned press releases relating his findings to evidence for creationism or panspermia. He sarcastically declared he appreciates the attention.

Through the use of his novel analytical tools for phylogenetics, Dr. Paps has been able to shed light on not only the origins of animals, but also the origins of plants and other animal clades. Finally, he concluded the seminar by announcing that he will now be working on the genomic evolution of parasitism.

Wielding sharp wits and a bright mind, Dr. Jordi Paps is undoubtedly a brilliant addition to the academic team of the University of Bristol. Welcome aboard Jordi!

Written by Violette Desarmeaux (year 4 MSci)

“Rewilding is active, controversial, exciting and happening”

One of the frontiers in the UK, Dr. Paul Jepson outlined his journey engaging with the process of rewilding, beginning in 2005, when he heard about work being undertaken in the Netherlands.

Rewilding is the process of restoring ecosystem dynamics and function at various levels; it can be condensed into the ‘3 C’s’;


  1. Securing core areas
  2. Connecting these core areas
  3. Re-introducing large carnivores

The loss of micro-habitat diversity due to the reduction of megafauna and large herbivores brings into focus the severe need to restore ecosystem function around the world on a large scale. Rewilding has been suggested as a solution to this. It aims to generate new natures that are ecologically richer than those before. As Paul said – it’s all about moving forward.

The study and application of rewilding has become much more prevalent in recent years with many articles and scientific papers being released on the subject. Despite being still in its relative infancy, there are many current cases of rewilding such as species reintroduction in the UK and the development of hybrid ecosystems in Australia.

The development of rewilding may signify a new environmental narrative in which people can readily challenge governments to take actions to change the recovery and wellness in nature to surpass previous standards. Dr. Jepson’s narrative structure of ‘Recoverable Earth’, in which recovery of the environment was the final outcome, was a refreshing notion.

Paul spoke briefly about the rewilding poster child project in Nijmegen in the Netherlands:

This project was highly successful and created a huge diversity of habitats within the small area which boosted the public opinion of the scheme. Dr Jepson also spoke about the vast socio-economic benefits of rewilding with its positive impact on property values, life quality and job opportunities in Nijmegen.

Controversies surrounding rewilding included the mention of the starvation of large herbivores that were reintroduced into the Oostvaarderplassen nature reserve and the consequent public outrage in the Netherlands. Paul spoke about ‘kept wild’ animals in rewilding schemes as wild animals under management by humans (as is the norm in Southern Africa) being the most viable way to tackle current restrictions faced by domesticated animal laws; such the legal requirement to remove a carcass of a domestic animal within 3 days of death. This restricts the processes associated with carcass and scavenger ecology, which in turn restricts trophic expansion within the rewilding environment. De-domestication policies are being thought up that will enable rewilding schemes to have maximum success in trophic expansion through carcasses of ‘kept wild’ animals being reintroduced into food chains.

The seminar was closed with some thoughts on the future of rewilding. Paul spoke about the exciting future projects that rewilding has to offer and the likelihood that they will interlink with advances in technologies within the ever-expanding areas of biological sciences.

Written by Nina Blampied (year 2 Zoology BSc)

Rainbow Meadow supporting the Bees’ Needs

The beautiful Rainbow Meadow outside Royal Fort House has won the Bees Needs Champion 2018 award!

The annual wildflower meadow is part of the ‘My Wild City’ project – a scheme by Avon Wildlife Trust launched in 2015 as part of the #GetBristolBuzzing campaign. The #MyWildUniversity initiative, works within the #MyWildCity framework and is a commitment set out by the External Estates Department to work within and adopt this strategically across our landscapes within the University of Bristol. This exciting collaboration has combined research from the Life Sciences department at the University and the National Pollinator Strategy for England, and has been brought about by the wonderful Royal Fort Estates Team and students from Roots Community Gardening – a student-led volunteering group who promote positive mental health and wellbeing by encouraging more students to connect with nature and their local community.

The recognition by DEFRA and Keep Britain Tidy for the project’s contribution to pollinators and the local community has been a huge honour. The award ceremony was hosted by the Royal Botanic Gardens (Kew) on the 13th November 2018, during which representatives from 26 Green Flag awarded projects were presented with the Bees Needs Champion award by Lord Gardiner (Parliamentary Under Secretary of State for rural Affairs and Biosecurity):

“I urge everyone to be inspired by this year’s Bees Needs Champions and take pollinator protection into their own hands through simple actions such as growing more flowers, cutting grass less often and thinking carefully about using pesticides.”

It was hugely inspiring to see the wide range of groups, organisations and individuals (councils, conservation charities, academic institutions and the Pollinator Advisory Steering Group) from across the country taking action to help pollinators and conserve the crucial ecological service they provide. The day included a number of speeches about the work that is being done to protect our pollinating insects, including; Philip Turvil and Richard Pollard from Grow Wild; Huw Merriman from the All Party Parliamentary Group for Bees; Hauke Koch and Phil Stevenson conducting scientific research projects at Kew; the Northumberland Honey company; and Dr Lynn Dicks from the University of East Anglia.

“The economic value of pollination is currently estimated at between $235-577 billion globally. A study in 2011 found that two-thirds of the crop pollination service is provided by wild pollinators, not by managed honey bees (Breeze et al., 2011). It is therefore important that we work to preserve landscapes that support common wild pollinators in the long term, by providing the food and nesting resources they need at the appropriate scale.” – Dr Lynn Dicks

We are extremely proud of the work that’s gone into achieving this award and want to say thank you and well done to all involved. Furthermore, whether you are a farmer, a gardener, or a manager of urban or amenity spaces, there is something you can do to help support our valuable insect pollinators.

There are five simple steps you can take to help pollinators in your area:

  1. Plant for pollinators
    Grow more nectar- and pollen-rich flowers, shrubs and trees
  2. Leave patches of land to grow wild
    Wildflowers are important for insects and undisturbed areas make good nesting sites
  3. Put away the pesticides
    They can harm bees and other beneficial invertebrates
  4. Leave your mower in the shed
    Cut grass less often to allow plants to flower. If possible remove the cuttings after you mow longer grass.
  5. Make a bee house
    Drill holes in a log or bundle up lengths of bamboo to provide nesting sites for solitary bees

Visit the Avon Wildlife Trust website to find out more about the Greater Bristol Pollinator Strategy and how you can become part of Get Bristol Buzzing campaign.

Professor Tracy Lawson talks about the effects of fluctuating light on photosynthesis and stomatal behaviour

This Monday Professor Tracy Lawson from the University of Essex talked to students and academic staff in Bristol about her last findings in the survey of stomata behaviour as a response to different environmental stimuli.

This Monday, Professor Tracy Lawson from the School of Biological Sciences of the University of Essex talked to students and academic staff of the LSB in Bristol about her last findings in the survey of stomatal behaviour as a response to different environmental stimuli. During the last 6 years, she and the members of her lab have been working on stomata, water assimilation rates and CO2 gain, the speed of response of stomata in different light conditions, and the importance of studying this topic according to current and future global environmental conditions such as increases in temperatures worldwide, more food production using less land, changing rainfall patterns and lack of water sources for demanding irrigation crops.

During the first part of her talk, Professor Lawson talked about how different plants have different patterns of stomatal behaviour and how these respond differently according to plant phenotype and environmental conditions. Just to mention an example, rice can get a maximum carbon assimilation rate of 95% in only 10 minutes in comparison to Ginkgo biloba that takes one hour to reach a similar rate.

To know more about how plants respond to light fluctuations and climate, Professor Lawson mimicked natural fluctuations in light over a diurnal period to examine the effect on the photosynthetic processes and growth of Arabidopsis (Arabidopsis thaliana). She compared the plant’s behaviour under square wave light and fluctuating light conditions. Under the first treatment, plants responded with thicker leaves, more photosynthetic efficiency, better leaf structure and more proteins associated with electron transport. Plants under the second treatment produced thinner leaves, lower light absorption and slower growth. Under both conditions, plants maintained similar photosynthetic rates.

However, these results highlight that there is a negative feedback control of photosynthesis resulting in a decrease of diurnal carbon assimilation under fluctuating light conditions and that plants under square wave light fail as predictors of performance under realistic light regimes.

The following part of her talk was about the impact of dynamic growth light on stomatal acclimation and behaviour. Professor Lawson assessed the impact of growth light regime on stomatal acclimation and gas exchange growing Arabidopsis plants in three different lighting regimes:

  1. with the same average daily intensity,
  2. fluctuating with a fixed pattern of light, fluctuating with a randomized pattern of light (sinusoidal), and non-fluctuating (square wave).

With this experiment she and her research team demonstrated that gs (stomatal conductance to water vapour) acclimation is influenced by pattern and intensity of light, modifying the stomatal kinetics at different times of the day and resulting in differences in the rapidity and magnitude of the gs response. They quantified the response to a signal that uncouples variation in CO2 assimilation and gs over most of the diurnal period. This can be translated as 25% water loss during the day without CO2 assimilation. The gs response can be characterized by a Gaussian element when incorporated into the Ball-Berry model to predict the gs in a dynamic environment.

Professor Lawson concluded that acclimation of gs to light could be an important strategy for maintaining carbon fixation and overall plant water status and should be considered to infer responses of crops under field conditions.

Written by Carlos Gracida Juarez (Biological Sciences PhD)

Research Seminar with Professor Eric Morgan

What killed over 200,000 saiga antelopes in Kazakhstan in 2015 and should it change how we think of wildlife disease?

As a species that inhabits vast regions of the Kazakhstan steppe and maintains one of the most magnificent migratory patterns in the world, it is no wonder that the mass mortality event of 2015 that killed over 200,000 saiga antelope became a global cause for concern.

In his seminar, Eric Morgan, a Professor at the School of Biological Sciences at Queen’s University Belfast, outlined the scientific response to such a mass mortality event, placing particular emphasis on the challenges he and his research team faced in the identification of the causal agent.

Saiga antelope, distinct due to their bulbous nose, roam the planes of Kazakhstan, migrating vast distances from winter to summer to aid survival in harsh environmental conditions. Once abundant, the species has experienced a series of population crashes since the collapse of communism due to a corresponding crash in livestock numbers, resulting in an increase in hunting.

Due to their complex migratory patterns, the saiga antelope is difficult to conserve, therefore mobile nature reserves were constructed by local authorities in response to their decline. This resulted in significant population growth, making the initiative “a great conservation success story”, as described by Eric.

However, the story doesn’t end there. In 2015 Richard Kock, Professor of wildlife health and emerging diseases at the Royal Veterinary College in London, discovered a vast graveyard of saiga antelope that had aggregated in central Kazakhstan to calve.

As a keystone species, this mass mortality event attracted a flurry of media attention and demanded urgent answers as to what had caused so many saiga antelope to die over a minute timescale. A meeting hosted by the UN resulted in the construction of a core research team, of which Eric Morgan was a key member.

Having never seen anything of this nature before, Eric went on to explain some of the atypical features of the scene that stumped researchers, such as even spacing of carcases, indicating an almost synchronised death of antelopes at the time of calving. Additionally, dead calves were found with their stomachs full, which is unusual as orphaned calves typically die of starvation. Therefore, this indicated to the research team that whatever had killed the adults had been passed to the offspring during feeding.

Symptoms included weakness, diarrhoea, respiratory difficulties and internal haemorrhages. Eric described the project as uncomfortable and difficult to be involved in not only due to the tragedy but due to the lack of time to respond, stating that “it was so up in the air”. The research team, therefore, were denied the time to generate and develop full hypotheses, finding themselves testing hunches, not factors. A working hypothesis table was constructed, detailing circumstantial causes rated from high to low probability. This table can be found supplementary to Eric’s paper.

The team ruled out many bacteria and viruses along with heavy metals as causal factors. A laugh was shared as Eric displayed a picture of his arm covered in mosquitoes, explaining how he had to let day-feeding mosquitoes land on him so that they could be picked off and sampled to rule out a vector-borne disease.

Finally, a diagnosis of Pasturella multocida was made, again puzzling the research team in that the bacteria is very common in the tonsils of carrier animals, so why doesn’t it cause a mortality every year? A factor within the saiga population must have been changing for bacteria carried in the tonsils to suddenly begin to invade the rest of the body. So far, further research does not show any differences between bacteria that breach the intestinal mucosa and that carried on the tonsils.

Eric continued by highlighting other interacting factors that may form additional pieces of the puzzle such as climate and parasite invasion. Climatic data at the time of past die-offs was collected and a principal component analysis developed. It was concluded that past die-offs had climatic factors in common, such as above 80% humidity and greater precipitation. Eric described this as a ‘climatic

signature’ but, highlighted that the link is weak as it is difficult to associate something out of the ordinary, a mass mortality event, with a variable factor such as climate.
But how do parasites enter the picture? “Humble gut-worms” stated Eric. Parasites invade the intestinal mucosa having dramatic effects on protein metabolism, and the effects may be accelerated during pregnancy. During late pregnancy and early-lactation, the mother directs proteins towards the developing calve, therefore is immunosuppressed and subsequently more vulnerable to bacterial infection.

Eric concluded by stating the team have only got so far in making definitive conclusions and that research is still ongoing. He commented that he is very pleased to have been involved in “a real conundrum” and described the experience as “most satisfying”.
It is possible that nothing can be done to prevent mass mortality events like this from affecting the saiga antelopes in the future. Therefore, research must focus on ways to develop populations large enough to “survive the hit”. However, it is important to acknowledge that this is relevant beyond the saiga system. Climate change is having a profound effect on host susceptibility and virulence. Adaptation to new conditions may be possible however room for manoeuvre is required. Eric stated “Leave parasites alone as they are part of the natural system? Maybe we cannot think like that anymore”.

The lecture was rounded off with a couple of questions, with one audience member enquiring as to whether the research team sought to treat any of the antelopes to try and increase the population back up to a sustainable level. Eric replied by stating “there is no time to intervene in something of this scale and would you want to?” He explained that the knee-jerk reaction may be to start feeding the saiga population hay and pasture, but that may lead to population aggregation around the food source and disease spread. “You have to think very carefully before you intervene in natural systems”.

Written by Beth Harris (year 3 Biology MSci)

Inside the Teaching Lab 360° Video

The state-of-the-art teaching laboratories have been designed to ensure a first rate educational experience in a safe and ergonomic workspace.

Cutting-edge equipment for experimental work includes:

  • Microscopy (compound, stereo, light and fluorescence, with imaging facilities).
  • Genetic analysis (PCR machines and gel electrophoresis/documentation systems).
  • Environmental monitoring (pH meters, oxygen meters, spectrophotometers).

The laboratories are fully furnished with notebook computers and new equipment for practical sessions focused on microscopy (high power compound types, low power stereo ‘scopes, video imaging), genetic analysis (PCR machines, gel documentation systems), and environmental monitoring (pH meters, oxygen meters, spectrophotometers).

This laboratory infrastructure is complemented by new equipment for field courses.

This state-of-the-art equipment allows us to introduce novel approaches to teaching, including the development and implementation of digital laboratory manuals (DLMs) for teaching core practical skills in biological research.

Final year practical projects are enhanced through access to new research laboratories where undergraduates work alongside academic staff, research staff, and postgraduate students; while tutorials and small-group teaching sessions benefit from the meeting rooms and break-out spaces that are integral to the building’s design.

Experience inside the teaching lab environment with this video either through a VR headset or on your phone/ipad in 360 degrees.

Top five societies for new biologists and zoologists

If you’re a new undergraduate reading this, then first off, congratulations on getting into Bristol! A big part of university life is the clubs and societies you can get involved with. There’s a huge range of them, and you can find full details of societies at the Bristol Students’ Union page. Joining university isn’t easy for anyone, but societies can help the transition – they’re a great way to meet new people, pursue your hobbies, or just try something completely new. Keep an eye out for freshers fair, where you can walk around and chat with the members of any societies you’re interested in (plus, there’s free food). With all that in mind, we’ve asked current students to recommend their favourite societies that are relevant to Biology and Zoology students!

Bristol University Conservation Group

£3 membership for a year

Most of you are probably already aware that we are having a tremendous impact on Earth, including far-reaching issues such as global warming and plastic pollution, all the way to motorboat noise pollution affecting cognitive learning in fish. Often these issues can seem overwhelming, but if you want to play your part in local conservation, then you should really consider the Bristol University Conservation Group.

The society spends weekends on reserves in and around Bristol, helping to conserve UK’s biodiversity, for example, by removing invasive species to allow native species to thrive. This is hugely important, as UK’s nature is not in great shape – by joining the society, you can help conserve UK’s declining biodiversity! Not only this, as the society’s President and 3rd-year biologist, Lucy Bell, told me, but it’s also “a great way for students of Biology and Zoology to get practical experience of some of the problems that we learn about in lectures and labs”. Indeed, in 1st year you’ll likely have a lab discussion about the impacts of invasive species – the society can complement your studies and aid your learning.

If you take the conservation unit in 2nd year, Professor Jane Memmott will tell you about how incredibly beneficial nature is to our wellbeing, including our mental health. This may seem obvious, but it’s pretty easy to spend the entire freshers week inside, drinking and sleeping – it’s important to get outside too! Owen Iredale, 3rd-year biologist and the Tools and Safety Officer, has “found the conservation group a great way to get out into the countryside”, and has helped “conserve a range of interesting wildlife habitats”. Starting at university is a nerve-racking experience for everyone. The Conservation Group, however, as Owen said, is a “super friendly and relaxed society, so it’s a great way for nervous Biology or Zoology freshers to meet other people”.

Ape Alliance Society

£3 membership, or £6 for a joint membership with Roots and Shoots Society (a primate conservation group).

The Ape Alliance Society is another important group dedicated to conservation. As the name suggests, their focus is on Great Ape conservation, specifically raising awareness about the challenges they face, and funding conservation efforts. The society itself is fairly small and tight-knit, so you can make a big difference from within, as Rosie Street (President and 3rd-year biologist) told me. “During the time I have been involved with Ape Alliance, we have run educational workshops in local schools, abseiled down the Avon Gorge in gorilla costumes and organised a showing of King Kong used a pedal-powered cinema, among many other crazy events.” The showing of King Kong raised over £700 for ape conservation, which is incredible for one night. As Rosie said, you can really make a difference with this society -“if you care about animal welfare, the palm oil problem, the loss of endangered species, and are interested in being involved in some wacky activities with some like-minded people then this is the society for you”.

University of Bristol Underwater Club (UBUC)

For a new diver, approximately £260 to qualify: Open Water qualification, personal gear, UBUC and BSAC membership. You can apply for a hardship fund to get up to £100 to help with more pricey societies: www.bristolsu.org.uk/societies-sport/activity-hardship-fund

Many biologists I know are hoping to pursue marine biology as a career, and if you’ve seen Blue Planet 2 then you can understand why. As Lois Flounders, President and 3rd-year zoologist put it, “as biologists and zoologists we should all be enthusiastic to explore and protect the marine world”. If you agree, then the university’s scuba diving society, UBUC, “provides the perfect opportunity to do this with a very sociable and welcoming society.” It’s open to existing divers and complete beginners – they run a taster session during freshers for anyone who wants to give it a go.

If you do join as a beginner, you’ll become a qualified diver over the course of a few months, learning in pool sessions, and doing your qualifying dives on weekend trips – this is a great excuse to get away to beautiful places like Cornwall for a few days with some great people. Lois also highlighted other courses they run too, such as Seasearch, a citizen science project run by the Marine Conservation Society!

Aside from learning to scuba dive, it’s one of the larger societies, as it also attracts ex-students and divers from outside university. You’ll find them at the pub every Tuesday, with socials playing a big part of the society – the highlight being the boat bar crawl. UBUC is a great way to meet students both of similar ages, and across the year groups. Biologists make up a large part of the membership too, so it’s a good way to meet fellow course members!


£3 membership for a year

Dinosoc is the university’s Palaeontology society. Luke Cadd, Social Secretary and 4th-year Biologist, was quick to recommend it, as it’s “been an amazing place to meet new people who are interested in all things fossil related. It is one of the only societies here at Bristol where I have felt part of a family, which is helped by its rather small size, but also the friendliness and acceptance of everybody who is involved”.

The society puts on a lot of events, for example, field trips, pub nights, and barbeques. You can see some of the beautiful places they visit by taking a look at their gallery here. They also have talks from some of the researchers here in Bristol who have published some fascinating findings on dinosaurs! Luke recommends it to anyone “interested in something a little different”, but also for the social side of things; “not everyone that comes is into fossils, but they love the atmosphere and the people”. So, if you’re interested in fossils, or just want to try something new with some great people, then definitely check it out!

Wildlife Film Society

£5 membership for a year; discounted and free tickets to events

The Wildlife Film Society is fantastic for any budding wildlife filmmakers, or just those who love watching nature documentaries, as Siwan Davies Busby (President and 3rd-year biologist) describes. “Since joining the society in the first year I’ve had the opportunity to attend talks by, and meet, people such as Elizabeth White, George McGavin and even the incredible Sir David Attenborough! The society has given me access to valuable knowledge about the industry and has even given me the opportunity to produce a small natural history documentary series. If you’re not interested in entering the wildlife filmmaking industry, there are also tonnes of opportunities to watch great documentaries from both indie film companies and the BBC.  We also have a wide range of other events from tours of the BBC Natural History Unit to camera equipment tutorials.  Make sure to get your membership and come along to our events!”

As Siwan mentioned, they have put on some really great events, and the tickets are often free or heavily discounted. One of the highlights was definitely Chris Packham interviewing Sir David Attenborough about some of the conservation issues we face. A producer of Spy in the Wild, Philip Dalton, also gave a great talk and brought some of their high-tech animal cameras down for people to have a go on – there are loads of events throughout the year you won’t want to miss!

Written by Ben Cobb (year 3 Zoology BSc)

A celebration of Pollination and Bristol’s Bees

On the first weekend of September, members of the Bristol community came together to celebrate pollinators in the University of Bristol’s Botanic Garden. The Bee and Pollination Festival returned in its ninth year and welcomed over 2,200 visitors across the two days. The Botanic Garden was abuzz, with a full schedule of educational talks, craft activities, live demonstrations, with plants and produce to browse and take home.

The Botanic Garden in full bloom.
Numerous stalls with plants for sale were throughout the festival.

Nick Wray, Curator of the Botanic Garden, summarised: “The festival allows scientists, beekeepers, food and cider producers and nature reserve managers to come together and share knowledge and experiences with the visitors. A programme of inspirational talks allowed experts to share their knowledge to some of the two thousand people who visited over the weekend, which this year coincided with the 90th Anniversary Year of the Bristol Beekeepers Annual Honey Show, making for an enriching experience for all.”

The School of Biological Sciences was represented by a team of researchers and current students, set on enthusing the public about pollination. The team’s educational messages focussed on highlighting the diversity of pollinators, beyond the much-celebrated honey bee, Apis mellifera. University of Bristol representatives spoke passionately about pollinators which are often overlooked, including hoverflies and solitary bees, of which there are over 250 species in the UK.

Myathropa florea has distinctive markings on the thorax – often likened to the Batman logo. This hoverfly was spotted feasting on nectar at the Botanic Garden.

Solitary bee houses from Professor Jane Memmott’s garden were on display to encourage the public to buy or build their own, aiding invertebrate conservation efforts.

Learn more http://www.avonwildlifetrust.org.uk/getbristolbuzzing

The Biological Sciences team showed visitors a range of different bee houses.
A buff-tailed bumblebee nest in a box.
The Biological Sciences team displayed insect collections and answered questions from the public.

Other delights included invertebrate collections from previous research projects, which garnered surprised reactions at the number and range of different bee species. Also, on show was an old nest of buff-tailed bumblebees, Bombus terrestris, which was interesting as they are usually hidden underground. Plants of Himalayan balsam, Impatiens glandulifera, were on display to engage visitors in discussions about non-native plants. Himalayan balsam is a real problem in nature reserves, out-competing native species. However, it amazingly has 10X more nectar and pollen than any native plant and is the fastest growing plant in the UK.

Jane Memmott showed visitors the giant Himalayan balsam plant, which had grown 2.5m in just a few months.

The stand offered games to play, including: “Guess how much sugar is in the flower.” Frieda, aged 10, spent half an hour playing and learning, asking questions to the University’s Biological Sciences team. Freida’s favourite part of the day was “discovering loads of stuff.” She added, “It’s great how much you can learn in one day. It’s cool how some flowers have loads of petals but are rubbish for bees.”

Frieda is referring to artificial selection occurring over a long period of time, for flowers with big, showy petals in multiple layers. Whilst aesthetically pleasing to some humans, there are consequences for pollinators; both the nectar and pollen content can be drastically reduced.

Freya Cohen from the Biological Sciences stand, explaining the differences between two Zinnia flowers and the consequences for pollinators.

Stallholder, Malcolm Allison, specifically brought plants to sell at the festival which are considered better for pollinators. These flowers are assumed to contain higher quantities of pollen and nectar, which is important for the conservation of local invertebrates. Researchers at the University of Bristol are currently investigating exactly what makes certain plants good for pollinators in collaboration with the Royal Horticultural Society.

The Avon Wildlife Trust at Feed Bristol were also selling wildflower plug plants. Rachael explained, “We do lots of wild collecting from local sites. Sourcing plants as locally as possible, means they are more resilient to pests.”

Rachael from Avon Wildlife Trust at Feed Bristol.
Pollen dusted bee visiting a flower during the Bee and Pollination Festival.

The festival welcomed representatives from the Bumblebee Conservation Trust. Somerset Volunteer Coordinator, John Butler, noted the current variety of bumblebee species in the garden, and observed: “There’s even a hornet flying around.”

Educational talks at the festival included a hornet identification workshop, where Colin Lodge discussed the threats posed by Asian Hornets, Vespa velutina nigrithorax. Meanwhile, Clara Montgomery, a PhD candidate from the School of Biological Sciences, presented her research on bumblebees and floral electric fields.

Bristol beekeeper, Quentin Alsop, captivated audiences with live hive demonstrations and carefully opened one of the Botanic Garden’s resident honey bee colonies to show the public the inner workings of the hive. Quentin discussed the stigma associated with stinging insects, and put people at ease whilst handling the bees, despite not wearing a bee suit.

Quentin Alsop’s live hive beekeeping demonstrations were well attended on both days.

Festival-goers got involved with activities including beeswax candle making and willow weaving workshops. One participant was overheard commenting on their willow creation “Well, it was meant to be a bee, but it’s now a dragonfly.” A success nonetheless.

The atmosphere was certainly festive, with the returning sunshine, and drinks provided by Mad Apple Cider Company. Sue Beech, Membership Secretary at the Botanic Garden, remarked, “It’s always a lovely and calm atmosphere at these events, even though it’s really busy.”

Ian Cunneen from Mad Apple Cider provided the festival with fresh tasty cider.

At the end of the festival, one person pulled over his car, wound down the window and declared, “That place, that just blew my mind.” Hopefully, next year’s will be just as good.

There was a very festive atmosphere throughout the weekend, with people relaxing and enjoying the sunshine in the garden.

The Botanic Garden is free to ALL students, under 18s, Friends of the Garden, and University of Bristol staff. Admission is otherwise £5.50 (includes a 50p gift aid donation). The Impossible Garden by Luke Jerram is open 7-days-a-week until November 25th, 2018. The exhibition is a collaboration between artist Luke, who is colour-blind, and researchers at the Bristol Vision Institute. The exhibition features 12 sculptural ideas exploring how we perceive the world around us.

Luke Jerram’s The Impossible Garden is open to the public until the end of November 2018.

Written by Freya Cohen (Biology MSci) and Rosie Leary

Graduation Party July 2018

Biological Sciences Graduation Party Group Photographs
Monday 16th July 2018
Life Sciences Building

Photographs by Sue Holwell