“Rewilding is active, controversial, exciting and happening”

One of the frontiers in the UK, Dr. Paul Jepson outlined his journey engaging with the process of rewilding, beginning in 2005, when he heard about work being undertaken in the Netherlands.

Rewilding is the process of restoring ecosystem dynamics and function at various levels; it can be condensed into the ‘3 C’s’;

 

  1. Securing core areas
  2. Connecting these core areas
  3. Re-introducing large carnivores

The loss of micro-habitat diversity due to the reduction of megafauna and large herbivores brings into focus the severe need to restore ecosystem function around the world on a large scale. Rewilding has been suggested as a solution to this. It aims to generate new natures that are ecologically richer than those before. As Paul said – it’s all about moving forward.

The study and application of rewilding has become much more prevalent in recent years with many articles and scientific papers being released on the subject. Despite being still in its relative infancy, there are many current cases of rewilding such as species reintroduction in the UK and the development of hybrid ecosystems in Australia.

The development of rewilding may signify a new environmental narrative in which people can readily challenge governments to take actions to change the recovery and wellness in nature to surpass previous standards. Dr. Jepson’s narrative structure of ‘Recoverable Earth’, in which recovery of the environment was the final outcome, was a refreshing notion.

Paul spoke briefly about the rewilding poster child project in Nijmegen in the Netherlands:

This project was highly successful and created a huge diversity of habitats within the small area which boosted the public opinion of the scheme. Dr Jepson also spoke about the vast socio-economic benefits of rewilding with its positive impact on property values, life quality and job opportunities in Nijmegen.

Controversies surrounding rewilding included the mention of the starvation of large herbivores that were reintroduced into the Oostvaarderplassen nature reserve and the consequent public outrage in the Netherlands. Paul spoke about ‘kept wild’ animals in rewilding schemes as wild animals under management by humans (as is the norm in Southern Africa) being the most viable way to tackle current restrictions faced by domesticated animal laws; such the legal requirement to remove a carcass of a domestic animal within 3 days of death. This restricts the processes associated with carcass and scavenger ecology, which in turn restricts trophic expansion within the rewilding environment. De-domestication policies are being thought up that will enable rewilding schemes to have maximum success in trophic expansion through carcasses of ‘kept wild’ animals being reintroduced into food chains.

The seminar was closed with some thoughts on the future of rewilding. Paul spoke about the exciting future projects that rewilding has to offer and the likelihood that they will interlink with advances in technologies within the ever-expanding areas of biological sciences.

Written by Nina Blampied (year 2 Zoology BSc)



Research Seminar with Professor Eric Morgan

What killed over 200,000 saiga antelopes in Kazakhstan in 2015 and should it change how we think of wildlife disease?

As a species that inhabits vast regions of the Kazakhstan steppe and maintains one of the most magnificent migratory patterns in the world, it is no wonder that the mass mortality event of 2015 that killed over 200,000 saiga antelope became a global cause for concern.

In his seminar, Eric Morgan, a Professor at the School of Biological Sciences at Queen’s University Belfast, outlined the scientific response to such a mass mortality event, placing particular emphasis on the challenges he and his research team faced in the identification of the causal agent.

Saiga antelope, distinct due to their bulbous nose, roam the planes of Kazakhstan, migrating vast distances from winter to summer to aid survival in harsh environmental conditions. Once abundant, the species has experienced a series of population crashes since the collapse of communism due to a corresponding crash in livestock numbers, resulting in an increase in hunting.

Due to their complex migratory patterns, the saiga antelope is difficult to conserve, therefore mobile nature reserves were constructed by local authorities in response to their decline. This resulted in significant population growth, making the initiative “a great conservation success story”, as described by Eric.

However, the story doesn’t end there. In 2015 Richard Kock, Professor of wildlife health and emerging diseases at the Royal Veterinary College in London, discovered a vast graveyard of saiga antelope that had aggregated in central Kazakhstan to calve.

As a keystone species, this mass mortality event attracted a flurry of media attention and demanded urgent answers as to what had caused so many saiga antelope to die over a minute timescale. A meeting hosted by the UN resulted in the construction of a core research team, of which Eric Morgan was a key member.

Having never seen anything of this nature before, Eric went on to explain some of the atypical features of the scene that stumped researchers, such as even spacing of carcases, indicating an almost synchronised death of antelopes at the time of calving. Additionally, dead calves were found with their stomachs full, which is unusual as orphaned calves typically die of starvation. Therefore, this indicated to the research team that whatever had killed the adults had been passed to the offspring during feeding.

Symptoms included weakness, diarrhoea, respiratory difficulties and internal haemorrhages. Eric described the project as uncomfortable and difficult to be involved in not only due to the tragedy but due to the lack of time to respond, stating that “it was so up in the air”. The research team, therefore, were denied the time to generate and develop full hypotheses, finding themselves testing hunches, not factors. A working hypothesis table was constructed, detailing circumstantial causes rated from high to low probability. This table can be found supplementary to Eric’s paper.

The team ruled out many bacteria and viruses along with heavy metals as causal factors. A laugh was shared as Eric displayed a picture of his arm covered in mosquitoes, explaining how he had to let day-feeding mosquitoes land on him so that they could be picked off and sampled to rule out a vector-borne disease.

Finally, a diagnosis of Pasturella multocida was made, again puzzling the research team in that the bacteria is very common in the tonsils of carrier animals, so why doesn’t it cause a mortality every year? A factor within the saiga population must have been changing for bacteria carried in the tonsils to suddenly begin to invade the rest of the body. So far, further research does not show any differences between bacteria that breach the intestinal mucosa and that carried on the tonsils.

Eric continued by highlighting other interacting factors that may form additional pieces of the puzzle such as climate and parasite invasion. Climatic data at the time of past die-offs was collected and a principal component analysis developed. It was concluded that past die-offs had climatic factors in common, such as above 80% humidity and greater precipitation. Eric described this as a ‘climatic

signature’ but, highlighted that the link is weak as it is difficult to associate something out of the ordinary, a mass mortality event, with a variable factor such as climate.
But how do parasites enter the picture? “Humble gut-worms” stated Eric. Parasites invade the intestinal mucosa having dramatic effects on protein metabolism, and the effects may be accelerated during pregnancy. During late pregnancy and early-lactation, the mother directs proteins towards the developing calve, therefore is immunosuppressed and subsequently more vulnerable to bacterial infection.

Eric concluded by stating the team have only got so far in making definitive conclusions and that research is still ongoing. He commented that he is very pleased to have been involved in “a real conundrum” and described the experience as “most satisfying”.
It is possible that nothing can be done to prevent mass mortality events like this from affecting the saiga antelopes in the future. Therefore, research must focus on ways to develop populations large enough to “survive the hit”. However, it is important to acknowledge that this is relevant beyond the saiga system. Climate change is having a profound effect on host susceptibility and virulence. Adaptation to new conditions may be possible however room for manoeuvre is required. Eric stated “Leave parasites alone as they are part of the natural system? Maybe we cannot think like that anymore”.

The lecture was rounded off with a couple of questions, with one audience member enquiring as to whether the research team sought to treat any of the antelopes to try and increase the population back up to a sustainable level. Eric replied by stating “there is no time to intervene in something of this scale and would you want to?” He explained that the knee-jerk reaction may be to start feeding the saiga population hay and pasture, but that may lead to population aggregation around the food source and disease spread. “You have to think very carefully before you intervene in natural systems”.

Written by Beth Harris (year 3 Biology MSci)



A Day in the Life: Head of School

Day in the Life interview with Head of School Professor Mike Benton

Professor Mike Benton
  • What do you normally do before work?

My ideal breakfast would be a kipper or a haggis, but I don’t usually get that I must admit, so a leisurely breakfast where I read the paper, do the crossword and come to work.

  • What is the first thing that you do when you arrive at the LSB?

I kill emails when I arrive. There are usually around 50 emails that have come in, I get these down very quickly, so I apologise to anybody if they have sent an email first thing, I just skim past it with all the spam and all the other stuff that comes through. I then look through my diary to see what is coming up and prepare for meetings, lectures and things like that.

  • Briefly, describe a typical day at work and any interesting things to point out that other members of staff may not know.

It is very difficult to say, and I think everybody will say that there is no such thing as a typical day.

I manage to keep some days clear for research. It is a huge pleasure to be able to get on with projects such as working on mass extinctions, dinosaurs, and all the things I love to do. I often speak to students, masters and PhD’s to find out how they are getting on and to help with their writing, planning, booking visits to museums and those kinds of things.

But at the moment being head of the department I attend a lot of meetings and I have to ask people what on earth all these meetings are. I try to delete as many of them as I can, I go to things and sit there and wonder why I am there sometimes, but there is often an opportunity to speak up for the School of Biological Sciences, so I always do that.

  • What is your favourite part of the day?

I guess my favourite part of the day is after 17:00 because then things become quiet. If you stay on until 18:00 then that is an hour without meetings and without people knocking on the door, a very good moment.

  • Tell us an interesting fact about yourself?

Because I do a lot of fieldwork in China, I go to China maybe once or twice a year and of course being polite one eats what one is given so I have eaten a variety of turtles or terrapins I suppose they are. The most unusual thing I have had to eat was a bit of the larynx of a cow which was a bit like eating a sort of faintly meaty plastic.

  • What is your favourite way to spend your weekends/favourite hobbies?

At the weekend I love to be in my garden which has lots of trees. I love climbing around in the trees when my wife is out and trimming them and cutting the huge hedges, and generally just gardening is a nice fun thing to do.

  • If you could go to any place in the world, where would you go?

I would love to go to Antarctica sometime, I have never been there, and I think many people would say the same. I suppose it is kind of easier to get to every other continent and I have been to every other continent as it happens, but Antarctica would be fun. It’s cold and full of penguins – what could be better than that?

  • Finally, tell us why you love working here!

Well, I love working at the University of Bristol in the Life Sciences building, because you can do what you like. I just love it. I come and go when I like and do what I like and I am getting paid to do my hobby; it’s fantastic.