In the business of dwarf mongooses

Leopards, hard-boiled eggs, “yip yip yip”-ping, and faeces collecting – just a typical day in the life of dwarf mongoose field researcher Amy Morris-Drake. 

Having spent a holiday in South Africa before starting her undergraduate degree in Biology at the University of Bristol, Amy Morris-Drake fell in love with the noise and colours of the African bush. At the end of 2013, having graduated, she saw an advert seeking a Research Assistant that required the applicant to go to South Africa and study the behaviour of an adorable tiny mammal entirely unknown to Amy at the time, the dwarf mongoose.  

The dwarf mongoose is the smallest of the three social mongoose species found in Africa, making termite mounds their home. Collectively known as a business, dwarf mongooses measure 18–30cm from head to tail. But despite their size, dwarf mongooses are hardy creatures who work tirelessly – foraging, grooming and defending one another from rival groups and scores of predators. 

Always fascinated by animal behaviour and determined to return to Africa, Amy landed the Research Assistant job in Professor Andy Radford’s Dwarf Mongoose Research Project. She lived on Sorabi Rock Lodge reserve for 6 months, observing the creatures in their natural habitat. “It was originally going to be 3 months but I loved it and didn’t want to leave”, recalls Amy. The dwarf mongooses made such as impression that on her return to the UK, Amy decided to study them for her Masters and then her PhD (which she completed this year). She took a small break in between the Masters and PhD to try something new – observing elephant behaviour, also in South Africa – but that didn’t quite go to plan. “Instead of trying to focus on elephants, I was always scanning termite mounds so my eyes were just tuned in to these mongooses and their lives”. 

At Sorabi, the researchers (normally 4 per year) all share a house, eating and sleeping in close quarters before heading out solo to observe the 8 habituated mongoose groups. Because none of the ‘Big Five’ live on this reserve, students can roam on foot. “There may be the occasional leopard that passes through” Amy mentions casually, “but they’re nocturnal so we’re alright”. In her first few days on the reserve back in 2013, Amy recalls being baffled by fellow researchers at the stove every night boiling eggs, but quickly learned the reason. Habituated mongooses adore eggs, and the promise of a mouthful is enough to get the tiny mammals onto some scales for the students to monitor their weight to observe foraging success and pregnancies. And so, for Amy, every day at the researcher house involved waking up, eating breakfast and mashing last-night’s eggs. 

Dwarf mongooses rise with the sun at around 8 am, or 9 am if it’s a cold day. Amy would venture out to the burrow she tracked her mongoose family to the night before, kitted up with equipment, scales, a GPS, maps and, of course, eggs. She would sit by the mound with a flask of coffee and wait for the mongooses to emerge from their sleeping quarters. After the family finished up with their cuddles and grooming, Amy weighed them, treating them with a tiny piece of egg as a reward for jumping onto the scales. Repeated morning, midday and in the evening, handing over the egg with a “yip yip yip” to vocalise her thanks in mongoose for their cooperation, Amy could build a picture of how different situations affects the weight of individuals. 

The focus of Amy’s PhD was social conflict, including territorial interactions with outsider groups. To simulate the current or recent presence of rival groups, Amy used playback of calls and introduced faeces from rival families to the group and then studied their response. This required collecting hundreds of faecal samples for different experiments. She describes wading through the bushes in gaiters to protect from ticks and thorns, and waiting for the mongooses to do their business, all the while enduring their judgmental stares. In one experiment, Amy stored “outsider” samples and distributed these on cue to the group being studied at the same time every day for a week; in control weeks, she presented herbivore faeces in the same fashion. In total, she managed to complete both trials weeks to 7 of the habituated groups; a feat of perseverance, skill and patience.  

“When working with wild animals, things always go wrong”, she says. Sometimes the group would be preoccupied with sporadic territory-marking or birds of prey flying overhead, instead of reacting to the out-group scents and sounds. Due to certain reactions or conditions not going her way, Amy ultimately had to scrap nearly a month’s worth of data from that particular field season. It’s physically demanding work, with long hours spent alone in 35C heat with insects, invertebrates, and reptiles to contend with. Upon collecting the last few faeces samples, Amy remembers “falling on [her] knees and crying” with relief. But it was worth it: she found that, by the end of the week of rival-group faecal presentations, the test subjects were foraging closer together, grooming and scent-marking more, and putting on less weight, providing the first experimental evidence of cumulative effects of intergroup conflict. 

According to Amy, to be a good experimental biologist you need an incredible amount of patience. In the early stages of her research, Amy would call up the project’s Principal Investigator, Andy Radford, frustrated that she wouldn’t be able to obtain enough behavioural data to complete her Masters. But with practice, she was able to train her eye to spot the mongoose’s subtle movements, expressions, and vocal responses to outgroup threats, and finished her PhD earlier this year. “Fieldwork isn’t for everyone”, Amy notes, “but it’s amazing seeing cool behaviours that you’ve learned about in lectures happen half a metre away from you”. The dwarf mongooses go about their daily lives as if you’re not even there, and Amy had a first-hand view into this cooperatively breeding society. 

Amy visited the reserve every year for 7 years, spending 5 or 6 months out there at a time. She likes to think that the dwarf mongoose families remember her despite the months apart. The mongooses have blatant favourites in the researchers, giving out high-pitched calls to the ones they are most excited to see. Now that Amy has completed her PhD, she continues to work on the theme of outgroup conflict as a postdoc, with 10 years’ worth of mongoose data to sift through to uncover lasting behavioural and fitness impacts. As to the Dwarf Mongoose Research Project, Amy is hopeful that funding will be found so that many other researchers can follow her to Sorabi. One of her most rewarding moments has been to witness the experiences of her fellow scientists on the project as they fall in love with the vibrant beauty of South Africa and the diversity of its animals and landscapes. And the deepest love of all is for the mongooses. Contributors to the project have all stayed in touch, as members of a truly long-term community dedicated to the greater understanding and prosperity of these tiny but fearless creatures. 

Written by: Agatha Hewitt 

Remote data collection in the mountains of Nepal

When the arrival of Covid-19 took overseas fieldwork firmly off the menu, things looked rather bleak for the Micro-Poll project. Our aim was to understand the links between pollinators, climate change and human nutrition in rural Nepal, but with an interdisciplinary team of nutritionists, pollination ecologists and climate change modellers scattered across six different countries and a whole lot of complex fieldwork to be run in Nepal, this looked like a challenge too far. In mid-April however, in the remote hills of western Nepal, a remarkable thing occurred. In the midst of a global pandemic, ten enthusiastic young field assistants from ten local villages were trained in the science of pollination ecology and began a year of data collection – all without a single overseas project partner setting foot in the country.

A small subsistence farm in the dry hills above Jumla – our field site in western Nepal

Where international travel has failed, technology and teamwork have excelled. A data collection app has been developed and translated into Nepali, guiding field assistants through the survey process and helping to identify plants and pollinators. Homemade training videos have been produced in the gardens of New Zealand and projected onto the walls of Nepali villages. Countless Zoom calls have taken place, with nets being waved in front of the camera and the basics of pollination ecology explained to our endlessly adaptable project manager in Nepal. In one particularly memorable moment (halfway through dinner), I was video called from the rocky hills of our field site, with the snowy Himalayas in the background, to watch the field assistants putting their newly-learnt skills into action.

As I sit at my desk, watching the data appear online, freshly uploaded from a transient patch of internet at the top of some remote hill in Nepal, I can’t help but wish this wasn’t all necessary – that I could be out there with them. But perhaps we should start to embrace this remote fieldwork as the new normal, as it does have some major advantages. So far, in the year or so of this project’s life, we have saved around 50 tons of carbon, just from staying put in our own countries. This has also had another important effect – in the absence of overseas staff, the team in Nepal have had to take full ownership of this project, learning, managing and implementing everything for themselves. This embeds the work in Nepal in a much more permanent way, ensuring the skills, capacity and knowledge it has built live on long after the end of the project.

Background to the Micro-Poll ProjectMicro-Poll is a 3-year transdisciplinary project led by Professor Jane Memmott, with partners from the University of Harvard, the University of Helsinki and UCL. The project is funded by the Belmont Forum (a consortium of international funders including NERC, NSF and the Finnish Academy) and the Bristol Centre for Agricultural Innovation.  Nepal is on the front line of climate change, placing both its people and its pollinators at risk. Pollinator declines are predicted to impact human health as key micronutrients in insect pollinated crops such as vitamin A and folate are lost from the diet. With no viable alternatives to home-grown foods and limited access to vitamin supplements, rural Nepali communities cannot afford to lose their pollinators. Our project aims to predict the impacts of climate change on pollinator communities and the resulting effects on human nutrition. We will use this information to devise mitigation strategies for safeguarding both pollinators and human health in Nepal.

Written by: Tom Timberlake, lead post-doc on the Micro-Poll project

One of the new field assistants surveying early spring pollinators on the apple blossom
The new data collection app being put into action during the training course
Perfecting the art of catching insect pollinators in the training course
Deepak, the Nepali team leader teaching data collectors how to establish survey plots
Freshly trained field assistants with the Nepali project staff after a week of intense training in Jumla